首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125059篇
  免费   12341篇
  国内免费   7389篇
电工技术   4946篇
技术理论   4篇
综合类   12745篇
化学工业   21481篇
金属工艺   10985篇
机械仪表   7001篇
建筑科学   24382篇
矿业工程   5081篇
能源动力   3074篇
轻工业   6437篇
水利工程   2872篇
石油天然气   5144篇
武器工业   1482篇
无线电   6531篇
一般工业技术   18094篇
冶金工业   4690篇
原子能技术   636篇
自动化技术   9204篇
  2024年   279篇
  2023年   1695篇
  2022年   3159篇
  2021年   3834篇
  2020年   3841篇
  2019年   3190篇
  2018年   3030篇
  2017年   3865篇
  2016年   4147篇
  2015年   4358篇
  2014年   7419篇
  2013年   6509篇
  2012年   8749篇
  2011年   9551篇
  2010年   7502篇
  2009年   8077篇
  2008年   7051篇
  2007年   8777篇
  2006年   8060篇
  2005年   6906篇
  2004年   5620篇
  2003年   5110篇
  2002年   4297篇
  2001年   3651篇
  2000年   3069篇
  1999年   2524篇
  1998年   1976篇
  1997年   1680篇
  1996年   1336篇
  1995年   1154篇
  1994年   1038篇
  1993年   744篇
  1992年   612篇
  1991年   485篇
  1990年   360篇
  1989年   243篇
  1988年   187篇
  1987年   101篇
  1986年   66篇
  1985年   85篇
  1984年   65篇
  1983年   58篇
  1982年   74篇
  1981年   22篇
  1980年   76篇
  1979年   23篇
  1978年   11篇
  1975年   11篇
  1959年   10篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
11.
The main scope of this comprehensive study is to investigate the effects of poly(p-benzophenoneoxycarbonylphenyl acrylate), poly(BPOCPA), which presenting as only graft units or both graft and ungrafted units in the matrix, on the fundamental features of isotactic polypropylene (IPP). The graft copolymerization of BPOCPA onto IPP was performed with the aid of bulk melt polymerization at varying monomer content levels ranging from 5% to 40%. The thermal behavior, crystal quality, mechanical performance, and surface morphology of the samples were investigated by means of differential scanning calorimeter, X-ray diffractometer (XRD), universal mechanical test, and scanning electron microscope (SEM) techniques. Thermal analyses depicted that there existed the noteworthy enhancements in both crystalline melting temperatures and percent crystallinities of matrix polymers. Furthermore, according to XRD results, a and b parameters increased significantly at low percentages of the graft units, while the parameter c decreased in all products in consistence with the content. As for the mechanical characterization, the grafting led to remarkable improvements in modulus, tensile and impact strength of the products. SEM micrographs indicated that the samples were completely homogeneous without any phase separation and the products exhibited brittle nature with some ductility.  相似文献   
12.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
13.
Technical development in electronic devices is frequently stifled by their insufficient capacity and cyclic stability of energy-storage devices. The nano-structured materials have sensational importance for providing novel and optimized combination to overcome exiting boundaries and provide efficient energy storage systems. Metal hydroxide materials with high capacity for pseudo-capacitance properties have grabbed special attention. Lately, the blend of nickel and cobalt hydroxides has been considered as a favorable class of metallic hydroxide materials owing to their comparatively high capacitance and exceptional redox reversibility. The sulfonated carbon nanotube fluid (SCNTF) was prepared by the ion exchange method to be utilized as the exceptional templates due to astonishing specific surface area, ensuring the maximum utilization of the active material. The CoNi-layered double hydroxides (LDHs)/SCNTF core-shell nanocomposite was prepared by the simple solvothermal method. Structural analysis showed that the composite material had the high conductance of carbon materials, the pseudo-capacitance characteristics of metal hydroxides, and porous structure, which facilitates the ion shuttle when the electrolyte reacts with the active material. Electrochemical analysis results showed that CoNi-LDHs/SCNTF had excellent rate performance, reversible charge-discharge properties and cycle stability. It exhibited an extreme specific capacity of 1190.5 F g?1 at a current density of 1 A g?1; whereas specific capacity remained 953.7 F g?1 at the current density was 10 A g?1. In addition, the capacity retention rate after 5000 charge-discharge cycles at a current density of 20 A g?1 was 81.0%. The results indicated that the CoNi-LDHs/SCNTF core-shell nanocomposite material is cost efficient and an effective substitute in energy storage applications.  相似文献   
14.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
15.
A series of rare earth zirconates (RE2Zr2O7) high-entropy ceramics with single- and dual-phase structure were prepared. Compared with La2Zr2O7 and Yb2Zr2O7, the smaller “rattling” ions (Yb3+, Er3+, Y3+) have been incorporated into pyrochlore lattice in (La0.2Nd0.2Y0.2Er0.2Yb0.2)2Zr2O7 (LNYEY) while larger ions (La3+, Nd3+, Sm3+, Eu3+) incorporated into fluorite lattice in (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 (LNSGY). Due to high-entropy lattice distortion and resonant scattering derived from smaller ions Yb3+, Er3+, and Y3+, LNYEY shows a lower glass-like thermal conductivity (1.62-1.59 W m-1 K-1, 100-600℃) than LNSGY (1.74-1.75 W m-1 K-1, 100-600℃). Moreover, LNYEY and LNSGY exhibit enhanced Vickers’ hardness (LNYEY, Hv = 11.47 ± 0.41 GPa; LNSGY, Hv = 10.96 ± 0.26 GPa) and thermal expansion coefficients (LNYEY, 10.45 × 10-6 K-1, 1000℃; LNSGY, 11.02 × 10-6 K-1, 1000℃). These results indicate that dual-phase rare-earth-zirconate high-entropy ceramics could be desirable for thermal barrier coatings.  相似文献   
16.
17.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
18.
In this study the effects of high temperature and moisture on the impact damage resistance and mechanical strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates were exposed to either a 1050°C isothermal furnace-based environment for 30 consecutive days at 6 h a day, or 95% relative humidity environment for 13 consecutive days at 67°C. Low velocity impact, tensile and short beam strength tests were performed on both ambient and environmentally conditioned laminates and damage was characterized using a combination of non-destructive and destructive techniques. High temperature and humidity environmental exposure adversely affected the impact resistance of the composite laminates. For all the environments, planar internal damage area was greater than the back side dent area, which in turn was greater than the impactor side dent area. Evidence of environmental embrittlement through a stiffer tensile response was noted for the high temperature exposed laminates while the short beam strength tests showed greater propensity for interlaminar shear failure in the moisture exposed laminates. Destructive evaluations exposed larger, more pronounced delaminations in the environmentally conditioned laminates in comparison to the ambient ones. External damage metrics of the impactor side dent depth and area directly influenced the post-impact tensile strength of the laminates while no such trend between internal damage area and residual strength could be ascertained.  相似文献   
19.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
20.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号